P3.5-1) A student team designed a catapult to launch a ball at a target of stacked cans. If the distance to the target (R = 8 ft) and the initial launch angle ($\theta = 45^{\circ}$) are known, determine the range of initial launch speeds (v_o) that will enable the ball to hit the target if the height of the stacked cans is h = 2 ft.

Given:

-inc	ŀ
1 1110	١.

Solution:

Calculate the projectiles range.

What is the range as a function of v_0 , θ , and t?

R = _____

Calculate the projectile height.

What is the height of the projectile at the end of flight as a function of v_0 , θ , and t?

Calculate the velocity range.

Combine the range and height equations and solve for the velocity for y = 0 and y = h.

 $v_{0,y=0} =$

 $v_{0,y=h} = \underline{\hspace{1cm}}$